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Abstract. Within the single band 2D-Hubbard model treated by means of a strong-coupling approach
based on a cumulant expansion and a nonstandard diagrammatic technique, we discuss the existence of
critical charge fluctuations that could give rise to an instability towards a phase separation (PS). It turns
out that such instability exists and evolves into an incommensurate charge density wave (ICDW) when
long-range Coulomb forces are taken into account. We find a stripe phase with a crossover from diagonal
to vertical stripes at increasing doping in the range 0.01 ≤ δ ≤ 0.2 and increasing Coulomb potential U ,
similarly to recent NMR experiments on La2−xSrxCuO4.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.45.Lr Charge-density-wave systems
– 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

The basic issue in the study of the high-Tc supercon-
ductors is related to the understanding of the anoma-
lous behavior in the normal phase characterized by the
breakdown of the conventional Fermi-liquid description.
The major features signaling the non conventional char-
acter of the metallic phase come from the optical con-
ductivity [1], electrical resistivity [2,3] and angle resolved
photoemission experiments [4–6]. It is widely believed
that the failure of the Fermi-liquid theory in the metal-
lic phase of the cuprates has to be ascribed to a singular
interaction among the electrons that manifests near some
quantum critical point (QCP) at zero temperature [7–9].
Within this scenario the singular scattering induced by
critical fluctuations would be responsible for the anoma-
lous normal-state properties. Different realizations of such
scenario ascribe the origin of the singular interaction to a
phase separation (PS), to a spin density wave in prox-
imity of an antiferromagnetic AF-QCP [7,8], or a charge
density wave in proximity of an incommensurate charge
density wave ICDW-QCP [9]. The theories based on the
AF-QCP [7,8] rely on the existence of an antiferromag-
netic phase in the low doping region and the observation
of strong spin fluctuations at larger doping [10,11]. On
the other hand, recent experimental results support the
existence of a QCP near optimal doping involving charge
degrees of freedom [12,13]. As suggested by the exper-
iments in La2−x(NdSr)xCuO4 [14], near and above op-
timum doping the spin degrees of freedom are enslaved
in the proximity of the ICDW-QCP where a stripe-phase
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takes place. Coexistence of ICDW and electron gas has
been observed in joint EXAFS [15] and X-ray diffrac-
tion[16] experiments. Also the recent experiments based
on neutron powder diffraction measurements of the atomic
pair distribution function[13] in La2−xSrxCuO4, over the
range of doping 0.0 ≤ x ≤ 0.30 at low temperature, show
a broadening of the in-plane Cu–O bond distribution at
increasing doping indicating the presence of charge inho-
mogeneities in the CuO2 plane, while a sharpening of the
peak is detected just above optimum doping suggesting a
crossover to an homogeneous metal. These experimental
evidences reveal that optimum doping emerges as a pe-
culiar point in the phase diagram of cuprates, not only
associated to the highest Tc, but also connected to the
crossover in the normal state properties, as suggested by
the ICDW-QCP scenario [9].

The aim of the present paper is to give a microscopic
description for the occurrence of a QCP in the proxim-
ity of a charge instability. We investigate the existence
of a such instability in the single-band Hubbard model
treated by means of a strong-coupling approach based on
a cumulant expansion and a nonstandard diagrammatic
technique. The approach makes use of a non-Fermi liq-
uid description of the single-band Hubbard model and in
this scheme the charge vertex at low energy as a func-
tion of the doping is analyzed within a generalized ran-
dom phase approximation (RPA). We find that the ver-
tex becomes singular tuning the doping. The singularity
appears at the wave-vector k = 0, as expected due to ab-
sence of long-range order forces in the model. When long-
range Coulomb forces are taken into account, the compe-
tition between phase separation and long-range repulsive
forces gives rise to an incommensurate CDW scattering
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near some finite vector kc. We thus recover the result ob-
tained in references [9] by the use of a standard large-N
approach within the Hubbard-Holstein model. The CDW
fluctuations mediate a strong momentum-dependent effec-
tive interaction among electrons which could be respon-
sible for a pseudogap formation in the spectral density
caused by dynamical charge modulations.

The paper is organized as follows. In Section 2 the
model and the general formalism are presented. Section 3
contains the analysis of the charge vertex function and
its low-energy behavior in presence of the local Coulomb
repulsion only. In Section 4 we generalize our approach to
take into account long-range Coulomb forces and finally
draw the conclusions in Section 5.

2 Formalism

We write the single-band Hubbard Hamiltonian as H =
H0 + HI , where H0 =

∑
iH

0
i is the atomic Hamiltonian

with

H0
i = −µ

∑
σ

niσ + Uni↑ni↓ (1)

HI =
∑
〈i,j〉,σ

tijc
†
iσcjσ, (2)

c†iσ(ciσ) is an electron creation (annihilation) operator
with spin σ at site i. U is the Coulomb repulsion, µ the
chemical potential and tij denotes the nearest neighbor
hopping. Since the zeroth order Hamiltonian contains the
Coulomb interaction, it can be diagonalized by using the
Hubbard and not the free electron operators. As a conse-
quence the ordinary Wick’s theorem in the evaluation of
chronological averages is not valid. Instead a generalized
Wick’s theorem has been proposed that permits to evalu-
ate the one-particle Matsubara Green functions by means
of a nonstandard diagram technique [17–19].

In a previous work we have calculated the one-particle
Green’s function by considering only chain-type of dia-
grams [20] which take into account first order cumulants.
This approximation leads to the Hubbard I type Green’s
function G(1)(k, iωn), in which the energy spectrum con-
sists of two Hubbard subbands,

G(1)
σ (k, iωn) =

G
(0)
σ (iωn)

1− t(k)G(0)
σ (iωn)

=
∑
i=1,2

Ai(k)
iωn − εi(k)

,

(3)

where G
(0)
σ (iωn) is the local-Hubbard Green’s function,

εi(k) is the energy band dispersion, Ai(k) are the spectral
weights of the two subbands, t(k) is the Fourier transform
of the hopping term. Their explicit expressions are the
following:

G(0)
σ (iωn) =

1− 〈n−σ〉
iωn − µ

+
〈n−σ〉

iωn − (U − µ)
, (4)

 

= + 

Γc Γc 

Π

Γc(0) Γc(0)

Fig. 1. Bethe-Salpeter equation for the vertex function Γ c in
the particle-hole channel. The thin wavy-line represents the
renormalized hopping.

where 〈n−σ〉 is the averaged on-site density of electrons
with spin −σ,

ε1,2(k) =
1
2

[
(U − 2µ) + t(k)

∓
√

(U − t(k))2 + 4t(k)〈n−σ〉
]
, (5)

where t(k) = −2t(cos kx + cos ky),

A1(k) =
ε1(k) − U(1− 〈n−σ〉)

ε1(k)− ε2(k)
= 1−A2(k). (6)

Besides, we have calculated the two-particle Green’s func-
tions, i.e. some generalized susceptibilities [21], by intro-
ducing second order cumulants. Here we consider a charge
dressed vertex obtained from the summation of a special
class of irreducible diagrams in the particle-hole channel,
i.e. the ladder-type of diagrams shown in Figure 1, which
takes into account two-particle correlation effects. For the
vertex we use a square diagram to remember that it cor-
responds to a local average of four operators. In the weak-
coupling theory the summation of diagrams of type (7)
is known as Random Phase Approximation (RPA). The
difference between the weak-coupling RPA and our lad-
der generalized RPA is contained in the bare vertex parts,
which are not given by bare potentials but two-particles
cumulants connected by a renormalized hopping.

The charge vertex obeys the following Bethe-Salpeter
equation

Γ c(k, iωn) = Γ c(0)(iωn)

+ Γ c(0)(iωn)Π(k, iωn)Γ c(k, iωn). (7)

Γ c(0) is the bare interaction vertex function that in our
case is a two-particle cumulant, i.e. a local two-particle
irreducible Green’s function, whose expression has been
calculated following the method of reference [22]:

Γ c(0)(iωn) = 〈nσ〉2
[

1
iωn + U

− 1
iωn − U

]
, (8)

Π(k) is the polarization insertion given by

Π(k) =−2t(k)− 2
β

∑
q,σ

t2(k+q)t2(q)G(1)
σ (k+q)G(1)

σ (q).

(9)

Here we have introduced the shorthand notation k =
(k, iωn) and similarly for q.
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Within Green’s function formalism, the instabilities
driven by charge fluctuations are signaled by the poles
of the vertex function Γ c (at zero temperature). Next, we
study the vertex function in the total frequency variable
to investigate the possible proximity of the system to a
criticality.

3 The charge-vertex function

In the following it is assumed that we start from the phase
where there is no order parameter and study the charge
vertex. When this function is singular, it is an indication
that a phase separation (when k → 0) or a charge ordering
(CDW) at finite k occurs in the system. To start with, we
perform the analytical continuation in equation (7) and
write the charge vertex as

Γ c(k, ω) =
1

[Γ c(0)(ω)]−1 −ReΠ(k, ω)− iImΠ(k, ω)
·

(10)

Numerical results show a deep minimum of the real part of
[Γ c(k, ω)]−1 at the wave vector k = 0 at small frequencies.
In this region we analyze the real and the imaginary part
of the denominator in (10), separately. In the range of
values of U of interest, the real part has been calculated
numerically. A good fitting of such part is given by the
function −Ω(k), where:

Ω(k) = (U + 4t(k)〈nσ〉2)/2〈nσ〉2. (11)

The expansion around k = 0 gives

Ω(k) ' m(δ) + αk2, (12)

where m(δ) is the mass term. It is a function of the doping
δ = (1 − 2〈nσ〉) and vanishes in correspondence of the
critical value [21] 〈nc

σ〉 =
√
U/8, where U is expressed

in units of t. In particular, it can be easily shown that
the mass term is linearly vanishing by approaching δc, i.e.
m ' (8/〈nc

σ〉)(δ − δc).
The analysis of the imaginary part is more involved

and takes much care. In the small ω limit, the analytical
results show that ImΠ(k, ω) is linear in ω

ImΠ(k, ω) ' −γ(k)ω +O(ω2) (13)

where γ(k) is the inverse of the relaxation time of the
charge fluctuations. For small k we can extract the angular
dependence of the relaxation time, i.e.

γ(k) ' 1
|k|γ(φ), (14)

where

γ(φ) =
1

4t2
πV 4

g(V )2

U2(1− 〈nσ〉)2

(U − V )2 + 4UV 〈nσ〉

×
∫ π

−π

dqx
2π

∫ π

−π

dqy
2π

√
1 + tan2(φ)

× δ(sinqx + tan(φ) sin qy)δ(cos qx + cos qy +
V

2t
),

(15)
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Tan(φ)=ky/kx 

γ(φ) 

Fig. 2. Anisotropy of γ(φ) for U/t = 5 and δ = 0.1.

V = µ(U−µ)
U−µ−U〈nσ〉 , g(V ) = 1

2 (1 − U(2〈nσ〉−1)+V√
(U−V )2+4UV 〈nσ〉

), µ

is the chemical potential which is determined in a self-
consistent way together with the total number of parti-
cles, tanφ = ky/kx, and the lattice spacing has been put
equal to one. As shown in Figure 2 γ(φ) is an anisotropic
function in the k space, that becomes maximum along the
diagonal direction.

From equations (11) and (13) we deduce that in the
low-energy region and for k→ 0 the charge vertex can be
written as

Γ c(k, ω) ' − 1
m(δ) + αk2 − iγ(φ)ωk

· (16)

This expression of Γ c is consistent with that obtained by
Di Castro et al. in the large-N expansion of the Hubbard-
Holstein model [9]. As shown in equation (16), Γ c is sin-
gular at ω = 0 when k → 0 signaling the occurrence of
a phase separation (PS) for a finite value of the doping.
The existence of such singularity causes a singular scat-
tering amplitude between quasiparticles with important
consequences on the single-particle properties where the
violation of the Fermi liquid behaviour mainly manifests
through the transfer of spectral weight from the quasi-
particle peak to an incoherent background. Besides, the
anisotropy of the vertex can explain the different behav-
ior of electrons or holes on the Fermi surface.

4 Effects of long-range Coulomb interaction

In this section we discuss the importance of the long-range
Coulomb (LRC) forces that could provide the basic ingre-
dient driving the system towards a charge aggregation.
The question of the importance of LRC forces has al-
ready been addressed in some theoretical works [9,23].
Within a different approach applied to the Hubbard-
Holstein model [9,24], the results showed that LRC forces
render the scattering amplitude between quasiparticles
anisotropic introducing an ordering in the system and ren-
dering it similar to the case of magnetic fluctuations [8]. In
our formalism, we would like to assess a similar electronic
origin of an incommensurate CDW. As we have previously
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Fig. 3. New types of diagrams appearing when long-range
Coulombic forces are taken into account. The thick wavy-line
represents the Coulombic potential.

seen the generalized susceptibility and consequently the
charge vertex Γc(q, ω) in our formalism, provide evalu-
able informations on the stability of the system. In par-
ticular, a divergence in the charge vertex Γc(q, ω = 0)
signals the occurrence of a Phase Separation (PS) when
q → 0 or a CDW when q is finite. In the absence of LRC
forces the instability occurs at q = 0 up to some inter-
mediate doping. As we will see, the introduction of LRC
forces eliminates the small-q divergence in the static cor-
relation function giving rise to a finite q instability. The
long-range Coulomb interaction term is described by the
following Hamiltonian

Hc =
∑
i,j,σ

Vijniσnjσ , (17)

where niσ = c†iσciσ is the local density. It represents
the Coulombic potential between the electrons on a
two-dimensional square lattice embedded in a three-
dimensional space with a separation d between the plane
in z-direction. In the momentum space such Hamiltonian
can be written as

Hc = Vc

∑
q

G(q)ρqρ−q. (18)

where ρq =
∑

k,σ c†k+q,σck,σ, Vc is the Coulombic cou-
pling constant, G(q) is an anisotropic function in the
momentum-space whose expression has been explicitly
calculated in reference [24] by using a discretized form
of the Laplace equation. Indicating with ε‖ and ε⊥ the
dielectric constants in the plane and perpendicular to it,
it was found that Vc = e2d/2ε⊥a2 and G(q) = 1√

A2(q)−1
,

where A(q) = [ε‖/(ε⊥a2/d2)][(cos(aqx)+cos(aqy)−2)−1].
In the following we assume the values of the parameters
of a copper oxide superconductors of 214 type, d ' 3a,
ε⊥ ' 5, ε‖ ' 30. Let us generalize our diagrammatic tech-
nique to the case when a LRC potential is included. Apart
the diagrams shown in figure 1 a new series of diagrams
has to be considered. They are shown in figure 3.

Within the previous approximation, we can sum these
new sets of diagrams to obtain the following expression
for the vertex function

Γ (k, iωn) =
Γ c(0)(iωn)V (k)Γ c(0)(iωn)

1− V (k)
(∼
Π (k, iωn) + Γ c(0)(iωn)

) , (19)

whereV (k)=VcG(k),
∼
Π(k, iωn)=− 2

β

∑
q,σ

G(1)
σ (k+q)G(1)

σ (q).

First, we neglect the subset of diagrams of type (b), i.e.
the contribution from

∼
Π (k, iωn). The total LRC vertex is

expressed in terms of the short-range (SR) one, given by
(7), through the following relation

ΓLR(k, iωn) =
Γ c(0)(iωn)

1− Γ c(0)(iωn) (Π(k, iωn) + V (k))

=
Γ SR(k, iωn)

1− Γ SR(k, iωn)V (k)
· (20)

With our choice of diagrams, the expression for the
LRC vertex in terms of the SR one is the same as that
obtained in references [9]. After performing the analyt-
ical continuation, it can be seen that a divergence in
Γ SR(k, ω = 0) does not give a divergent response function
at LR. Furthermore, since Vc/

√
A2(k)− 1 → ∞ when

k→ 0, the compressibility should vanish as in a Coulomb
gas and thus the instability to a PS is completely sup-
pressed. New instabilities in the system can arise when

Γ c(0)(ω = 0)−1 −Π(k, ω = 0) = Vc/
√
A2(k)− 1. (21)

The inclusion of the set of diagrams (b) can be performed,
as usual, by introducing the renormalization of the bare
potential V (k). Indicating with V R(k, iωn) the renormal-
ized potential

V R(k, iωn) =
V (k)

1 + V (k)
∼
Π (k, iωn)

, (22)

we obtain

ΓLR(k, iωn) =
Γ c(0)(iωn)

1− Γ c(0)(iωn) (Π(k, iωn) + V R(k, iωn))

=
Γ SR(k, iωn)

1− Γ SR(k, iωn)V R(k, iωn)
· (23)

In the rest of the paper we will neglect the contribution
of diagrams of type (b) since the use of the renormalized
potential is not essential to describe a finite-k instabil-
ity. An extensive numerical analysis of the equation (21)
has been performed to search for the existence of a fi-
nite k instability in the system. Equation (21) defines a
line in the Brillouin Zone (BZ) given by the intersection
of two surfaces (the first and second members of (21))
reported in Figure 4. The instability due to LRC effects
appears at the point on the intersection line where V (k)
takes the smallest value. The vector at which the insta-
bility occurs is denoted by kc. The dependence on U of
kc is reported in Figure 5. The analysis of kc = (kcx, kcy)
shows that the larger values of U drive the instability close
to the (1,0) or (0,1) direction. As U increases a transi-
tion from diagonal to vertical stripes is observed. This is
a consequence of the structure of the short-range vertex
function that is enhanced by the large density of states
along the (1,0) or (0,1) direction. Besides, at increasing
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Fig. 4. Intersection of the two surfaces in equation (21) as a
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Vc = 3t, δ = 0.1.
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Fig. 5. Dependence of the components kcx and kcy at varying
U in units of t for the other values of parameters as in Fig-
ure 4. The dashed line has no physical meaning. It is used to
put in evidence the change in the direction of kc vs. U . The
inset shows the direction normal to the stripes at increasing U
starting from the diagonal.

U kc → (0, 0) indicating that the local Coulomb repul-
sion is more effective in driving the systems towards a PS.
The results as a function of the doping are plotted in Fig-
ure 6 and show that the effect of LRC forces is stronger
in the low-doping region where the distance among the
stripes (∝ 1

|kc| ) is decreased. The dependence on δ of the
direction of the critical vector kc is reported in the in-
set of Figure 6. It becomes closer to the (1,0) direction
above δ ' 0.13 which corresponds to the critical doping.
Our dependence on doping of the direction resembles very
much that found in a recent numerical work based on ex-
act diagonalization within a dynamical mean-field theory
in the Hubbard model [25] where the stable stripe phases
move from a diagonal to a vertical configuration in the
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Fig. 6. Dependence of the components kcx and kcy on the
doping δ for the other values of parameters as in Figure 4. The
inset shows the direction normal to the stripes at increasing
doping starting from the diagonal.

range 0.03 < δ < 0.2 at increasing doping. A similar be-
havior has been recently observed in NMR experiments on
La2−xSrxCuO4 [26,27] where a stripe structure has been
detected in the Sr concentration region from x = 0.035 to
x = 0.25 at low temperature. They found that the direc-
tion of the stripes changes from the diagonal direction on
the CuO2 lattice in the spin glass composition (x = 0.02–
0.05) to vertical direction in the superconducting compo-
sition (x > 0.055).

From the above analysis we conclude that the LRC
forces introduce an order in the system rendering it simi-
lar to the case when spin fluctuations are present [8] even
though the singularity appears at differently oriented mo-
menta.

As in the previous case, we perform an analysis of the
scattering amplitude close to the finite momentum diver-
gence on the Fermi surface. The expansion of the denom-
inator of (20) around k = kc for ω ∼ 0 gives

ΓLR(k, ω) ∼ − 1

Ω̃(k) − iγω
, (24)

where Ω̃(kc) = 0. When εq 6= εkc+q, the coefficient γ is
given by

γ(k ∼ kc, ω ∼ 0) = π

∫
d2q

(2π)2
t2kc+qt

2
q

× δ(εq)δ(εq − εkc+q)AqAkc+q. (25)

On the line εq = εkc+q (which intersects the Fermi surface
at the so-called hot-spots) the expression of γ is again given
by equation (15) with k→ k− kc.

It should be noted that the imaginary term in (24)
follows the behaviour of the mean-field fermionic bubble
∝ ω/k found previously, indicating that a RPA structure
appears in the final result.
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5 Conclusions

We have presented a strong-coupling analysis of the charge
vertex function in the Hubbard model treated by means
of a cumulant expansion method, where the effects of the
strong Coulomb interaction are already taken into account
at the zeroth order approximation. The results, based on
a generalized ladder-type RPA show that the charge ver-
tex becomes singular at a critical value of the doping for
ω = 0 and k = 0, implying the occurrence of a PS. The
inclusion of long-range Coulomb interaction shifts the in-
stability from k = 0 to k = kc, leading to an incommen-
surate charge density wave type of instability. The stripes
order has been investigated as a function of the Coulomb
potential and the doping. We found that the stripes phase
shows a crossover from diagonal to vertical stripes at in-
creasing doping in the range 0.01 ≤ δ ≤ 0.2, accordingly to
some dynamical mean-field calculations on the Hubbard
model and recent NMR experiments on La2−xSrxCuO4.
A similar behavior is observed at increasing U .

The consequences of the incommensurate charge den-
sity wave instability on the self-energy and the pseudogap
formation in the single-particle spectra are under study.
This analysis may be relevant for a microscopic under-
standing of the low-doping region of the high-Tc cuprates,
where a non-Fermi liquid behavior has been repeatedly
observed.

The authors would like to thank Dr. A. Perali for useful
discussions.
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